Browse Technologies

Displaying 1 - 10 of 85


Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.


Licensing Contact

Ashok Choudhury

615.322.2503

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Ashok Choudhury

615.322.2503

Wolbachia genetic tools for population control of harmful insects

Vanderbilt scientists have engineered transgenic methods for controlling the populations of insects, including infectious disease vectors like mosquitoes and agricultural pests that destroy crops and livestock.


Licensing Contact

Cameron Sargent

615.322.5907

New Insect Repellants Disrupt Olfactory Cues: A Strategy for Pest Protection

A multinational research team, led by Dr. L. J. Zwiebel of Vanderbilt University, has identified new compounds with potential as insect repellents. These compounds work by capitalizing on knowledge of how insect odorant receptors detect and respond to scents. Medicinal chemistry efforts have yielded a number of novel compounds that could short-circuit the insect olfactory system, essentially by over-stimulation, to effectively mask attractive odors. These compounds could be used to repel nuisance and disease-carrying insects away from humans and animals, as well as repel agricultural pests from crops or food storage facilities. Vanderbilt University is seeking commercial partners to develop the technology for agricultural uses.


Licensing Contact

Chris Harris

615.343.4433

Compliant Insertion, Motion, and Force Control of Continuum Robots

Vanderbilt researchers have developed a framework for compliant insertion with hybrid motion and force control of continuum robots. This technology expands the capabilities of robotic surgery by providing continuum robots with the ability to autonomously discern, locate, and react to contact along their length and calculate forces at the tip, thus enabling quick and safe deployment of snake-like robots into deep anatomical passages or unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067

A Simple and Highly Portable Flow Phantom for Doppler Ultrasound Quality Measurements

A new phantom has been designed in which Doppler ultrasound measurements can be conducted for quality assurance purposes. The phantom is highly portable, does not require power to operate, and allows for simple and reproducible measurements of Doppler ultrasound function. This combination of advantages allows for realistic monthly, weekly, even daily Doppler QA measurements.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Breast Tumor Margin Detection System Using Spatially Offset Raman Spectroscopy

Vanderbilt University researchers have developed a technology that uses spatially offset Raman spectroscopy to obtain depth-resolved information from the margins of tumors. This helps to determine positive or negative tumor margins in applications such as breast lumpectomy, and the technology is currently being investigated for breast cancer margin detection.


Licensing Contact

Ashok Choudhury

615.322.2503