Browse Technologies

Displaying 1 - 10 of 275

'Coffee Ring' Diagnostic for Point-of-Care Biomarker Detection

Bright minds at Vanderbilt University have unveiled a breakthrough technology that could bring sophisticated biomarker diagnostics to the developing world. The point-of-care diagnostic is designed to be used in the field; no specialized equipment, expertise, or white lab coats are required. The diagnostic is based upon the ingenous observation that evaporating liquid droplets leave behind a characteristic ring pattern, which may be familiar to our readers in the form of a coffee-ring stain.

A Method for Genetically Engineering Proteins with Cell Membrane Translocating Activity

The invention describes a membrane-translocating peptide sequence (MTS) which facilitates entry of polypeptides and proteins into cells. Also described is an isolated nucleotide sequence encoding the membrane-translocating peptide and a method of using this sequence to genetically engineer proteins with cell membrane permeability. The MTS, and the method of genetically engineering proteins with cell membrane permeability, are useful for polypeptide and protein delivery for human and veterinary applications such as vaccine delivery and cancer therapy.

A Sensor-Based Online Diagnostic Approach for Physical Systems

This technology addresses the problem of designing and implementing online monitoring and diagnosis systems for complex hybrid systems by focusing on faults that occur in plant components and contains models where faults are represented by changes in system parameters. Hybrid systems are common in the avionics, spacecraft, automotive and robotics domains where behavior is characterized by continuous plant dynamics and discrete supervisory control. These hybrid systems require a tool that analyzes and seamlessly integrates multiple system models on a discrete and continuous basis. As a result, tasks like monitoring, fault diagnosis and control require model selection and switching to be performed online as system behavior evolves.

A System for Growing Small Populations of Living Cells and Monitoring Their Physiological State

This invention combines the microfluidic and microelectronic devices and techniques required for the microminiaturization of cell culture and cell measurement systems to allow monitoring the response of populations of 1 to several hundred living cells. The instrument(s) allows for the detection of extracellular, membrane, and intracellular parameters; and the incorporation of closed-loop control techniques to continuously monitor the health of the cell and adjust the environmental and pharmacological parameters that control the cell.

Adjustable Universal Platform for Surgical Navigation, Approach, and Implantation

A surgical platform usable for performing a surgical procedure. In one embodiment, the surgical platform comprises a base portion configured to receive at least one probe; a plurality of adjustable legs configured to support the base portion, each adjustable legs having a first end portion and an opposite, second end potion defining a length therebetween; and at least one movable portion configured to adjust the length of at least one adjustable leg.

Algorithm for Age Related Macular Degeneration Prediction

Age-related Macular Degeneration (AMD) is the leading cause of blindness in elderly patients in developed countries, affecting approximately 7.5 million Americans. Recently several genetic and environmental factors have been implicated as susceptibility factors. We have developed an algorithm which can incorporate all of the risk factors a patient may have and determine a risk value for which they may be susceptible for developing AMD. Currently there is no predictive test for identifying individuals that are at risk for developing AMD rather individuals are screened after the age of 60 for the presence of the disease. This test would allow individuals who are at risk of developing AMD to be identified prior to onset of the disease so that preventative steps may be taken and delay or prevent AMD from occurring.

Algorithms for Compliant Insertion and Motion Control of Continuum Robots

This technology enables continuum robots (aka snake robots) to precisely navigate the intricate structures of deep anatomical passages during minimally invasive or natural orifice surgery. Collateral surgical damage is minimized by the force sensing capabilities of the algorithms used.

Algorithms for Contact Detection and Contact Localization in Continuum Robots

This technology enhances the capabilities of continuum robots by not only detecting contact during movement but also estimating the position of the contact during the movements executed by the robot. An algorithmic feedback loop can then constrain the movement of the robot to avoid damage to its robot arm, damage to another robot arm or damage to surrounding structure. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.