Browse Technologies

Displaying 11 - 20 of 85


COX2 Probes for Multimodal Imaging

Inventors at Vanderbilt University have developed a novel chemical design and synthesis process for azulene-based COX2 contrast agents which can be used for molecular imaging, via a variety of imaging techniques. These COX2 probes can be utilized for numerous applications, including imaging cancers and inflammation caused by arthritis and cardiovascular diseases. The process for developing these COX2 contrast agents has been significantly improved through a convergent synthesis process which reduces the required steps to establish the COX2 precursors.


Licensing Contact

Masood Machingal

615.343.3548
Medical Imaging

Heterogeneous catalysis of NMR Signal Amplification by Reversible Exchange(SABRE)

Vanderbilt researchers have developed heterogeneous catalysis and catalyst for the NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization process. Coupled with the researchers' development of a method to perform SABRE in aqueous solutions, this discovery could allow fully biocompatible SABRE hyperpolarization processes in water with catalyst recycling. This would allow the production of pure aqueous contrast agents requiring only parahydrogen as a consumable.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Miniature Optical Coherence Tomography Probe for Real-time Monitoring of Surgery

Vanderbilt researchers have designed a forward scanning miniature intraoperative Optical Coherence Tomography (OCT) probe that can be used for diagnostic purposes and real-time monitoring of surgery within small spaces, such as endoscopic surgery, intraocular surgery, and other microsurgery.


Licensing Contact

Taylor Jordan

615.936.7505

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

NMR Signal Amplification by Reversible Exchange (SABRE) in Water

Vanderbilt researchers have developed a method to perform the Parahydrogen Induced Polarization (PHIP) based method of Signal Amplification by Reversible Exchange (SABRE) in aqueous media. This allows the resulting hyperpolarized molecules to be used for in vivo applications.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Lickometer: Instrument for measuring rodent drinking behavior

Researchers at Vanderbilt University designed an instrument capable of higher accuracy and analyzing lick microstructure compared to current available models. This device is compatible with classic ventilated home cages, making it easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. Ultimately, the system measures drinking preference over time and changes in bout microstructure, with undisturbed recordings lasting up to 7 days.


Licensing Contact

Greg Pawel

615.343.0996