Browse Technologies

Displaying 41 - 50 of 85


Non-Invasive Cell Size Detection

Vanderbilt researchers have developed a new method for using contrast enhanced MRI to non-invasively map and quantify cell size on a voxel-by-voxel basis. Using this approach, it is possible to monitor and detect diseases or treatments that alter the distribution of cell sizes such as cancer, muscular dystrophy, hepatocellular hypertrophy, and hypertrophic cardiomyopathy.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Parahydrogen-Induced Polarizer (PHIP)

The present invention provides a PANACEA (Pneumatics Allow Nonmagnetic Actuation for Creation of Enhanced Alignment) polarizer system. This is an integrated assembly of pneumatically actuated, nonmagnetic hydraulic circuits that enable PASADENA chemicals to be efficiently stored, mixed, and reacted in close proximity or within NMR magnetic fields.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Kevin Waddell
Medical Imaging

Real-time Detection of Position and Orientation of Wireless Endoscopy Capsule using Magnetic coupling

Vanderbilt researchers have developed a new system to detect the position, orientation, and pressure exerted on surrounding tissues of a wireless capsule endoscopy device.  Magnetic coupling is one of the few physical phenomena capable of transmitting actuation forces across a physical barrier.  Magnetic manipulation has the potential to make surgery less invasive, by allowing untethered miniature devices to enter the body through natural orifices or tiny incisions, and then maneuver with minimal disruption to healthy tissue.  In order to accomplish this goal, the pose (position and orientation) of the medical device must be available in real time.


Licensing Contact

Masood Machingal

615.343.3548

Selective Size Imaging using Filters via Diffusion Times (SSIFT)

Vanderbilt researchers have developed a novel MRI-based method for fast, robust, and accurate imaging of biological tissue by selecting a specific cell size range (such as tumors) without the need for a contrast agent. One exciting application of this method is imaging brain metastases (BM) that are difficult to differentiate from other brain abnormalities such as radionecrosis when using existing approaches.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Junzhong Xu
Medical Imaging

pECHO: Easy to Use Smartphone App for Assisting in Transesophageal Echocardiography Exam

Transesophageal echocardiography (TEE) is a test that uses high-frequency sound waves to create images of the heart. It provides more detail that a standard echocardiogram. Vanderbilt researchers have created a software that creates an easy to follow, step-by-step procedure for a transesophageal echocardiography exam.


Licensing Contact

Masood Machingal

615.343.3548

Anti-human Myeloid Cell Nuclear Differentiation Monoclonal Antibody

The antibody is a rat IgG1 monoclonal, clone 3C1.


Licensing Contact

Karen Rufus

615.322.4295
Research Tools
Antibody
Assays/Screening

Purified Bovine cAMP and cGMP Dependant Protein Kinases

This research targets PKA, PKG.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

Jackie Corbin
Research Tools
Cardiovascular
Protein/Peptide

Scn1a Knockout Mouse Genetic Model of Epilepsy

This is a unique genetically modified strain ofmice that models Dravet syndrome, a severe infant-onset epileptic encephalopathy. They are maintained on apure 129S6/SvEvTac genetic background to facilitate genetic studies.


Licensing Contact

Karen Rufus

615.322.4295
Research Tools
Animal Model

Immortalized Mouse Epididymal Epithelial Cell Lines

These cell lines are useful for studying the regulation of tissue-specific gene expression, and may also be used to identify epididymal-specific transcription factors involved in expression of specific proteins in the epididymis.


Licensing Contact

Cameron Sargent

615.343.2430
Research Tools
Genitourinary
Cell Line

GluN2B Floxed Mice (also called NR2B, glutamate receptor 2B)

Allows for targeted deletion of the GluN2B subunit of NMDA receptors in specific cells or at specific times during development, juvenile, or adult stages. C57BL6/J background


Licensing Contact

Cameron Sargent

615.343.2430

Inventors

Eric Delpire
Research Tools
Neuroscience/Neurology
Animal Model